Updated: July 24, 2013

Plasma Display Technology

An easy-to-follow explanation

Plasma televisions have been around for consumer use since 2003, yet there still remains a lot of consumer confusion about what plasma display technology is really all about.

If you would like to know more on the subject, here is a short easy-to-follow article that describes the basic operational principles behind flat-panel plasma TV technology.

Panasonic VIERA TC-P55ST60 55-Inch 1080p 3D Plasma HDTV Panasonic VIERA 55-inch TC-P55ST60
...first HDTV to ever gain a 5-Star rating
 in a Cnet review!

If the ST50 from 2012 did prove to be the HDTV to deliver the best value for your money, this new 2013 model from Panasonic turned out to be even better - delivering a picture you would generally expect from more expensive flagship model.

It is true that its 3D picture quality is not among the best, yet the ST60 is capable of amazing picture quality at a price that is well within reach of the average household budget.

Flat-Panel Plasma TVs: Among the most popular in big screen HDTVs...

Since the first plasma TVs appeared on the market less than a decade ago, a lot has changed in plasma display panel technology. The plasma TVs of today are more robust, less prone to burn-in, more energy efficient, thinner—some are just an inch-thick—and equally important, they are capable of a superior picture.

It is thus no surprise that plasma display technology represents by far the most popular display technology among videophiles and home theater enthusiasts looking for the best cinematic picture over large screen TVs.

The reality is that if you want the best in overall picture performance, a plasma display can deliver the best shade of black among flat-panel televisions, including the latest and more expensive LED TVs.

Black-level performance is a most important aspect in picture quality as it helps improve the realism of dark scenes while making colors look richer and more saturated.

The only display technology that may eventually surpass plasma in terms of picture quality and overall performance is OLED. But OLED represents an extremely expensive display technology, and one that still has to prove itself especially in the long term color stability despite claims by OLED TV makers that the new technology is now ready for the consumer market. In this respect, we still say that plasma display technology will remain the king of the big screen HDTV for a number of years to come, at least till the new technology proves itself over time and prices of OLED TVs become more within reach of the average household budget.

In this article, we explain the technology that makes this display technology so much capable of a superior picture performance.

Article continues after this advertisement.

Plasma Display Technology Explained

A Few 'Electron Physics' Basics First!

By definition, plasma is a state of matter (gas) where atoms are ionized by adding energy; in this case electrical energy is added by applying a voltage between two electrodes, which then leads to the flow of an electric current. In the process, positive and negative charged particles move fast towards the respectively opposite charged electrodes.

During this fast flow of particles, numerous collisions take place between electrons and atoms. These collisions cause electrons in an atom to jump to a higher energy level. However, it will soon fall back to its original energy level while releasing the extra energy in the form of a light photon.

The photon is that elementary particle responsible for all electromagnetic phenomena; it carries electromagnetic radiation, from gamma to radio. If it falls within the light spectrum, visible or otherwise, it is called a light photon.

The released light photons are in effect ultraviolet photons, meaning that the emitted radiation is invisible to the human eye. Ultraviolet light photons can be used to produce visible light by exciting phosphor atoms. Phosphors are substances that give off visible light photons when their atoms are hit by ultraviolet photons. The collision causes electrons to jump to a higher energy level; this energy is then released in the form of a visible light photon when the electron returns to its normal energy level. Different phosphor formulations yield different colors of light.

How does all this apply to a Plasma Display?

In a plasma display, electricity is used to excite the gas atoms inside the miniature cells forming the display panel; this in turn releases ultra-violet photons. The radiated UV causes the phosphor lining on these minute cells to emit energy in the form of visible colored light - the color of which depends on the type of phosphor used to line the cell.

Click on image to enlarge

Cross-sectional view of a plasma flat-panel display

image courtesy of  howstuffworks.com

These small cells form the picture elements or pixels of the plasma display panel, and can be thought of an array of miniature colored fluorescent tubes or neon light bulbs.

Plasma flat-panel displays consist of hundreds of thousands of such tiny cells that are positioned between two plates of glass. These cells are filled with neon and xenon gas.

Simple mathematics show that a typical wide screen panel with a screen resolution of 1365 x 768 pixels would have over 1-million miniature cells, while a plasma display panel supporting 1080p native screen resolution has almost 2.1 million miniature cells.

Each of these cells is further sub-divided into three sub-cells as will be explained further on, each representing one of the primary light colors (click on the image for more details).

Sandwiched between the glass-plates are long electrodes on both sides of the cells. The address electrodes sit behind the cells along with the rear glass plate while transparent display electrodes sit in front of the cells covered by a protective layer along the front glass plate.

Click on image to enlarge

'Three' sub-cell structure of a plasma display pixel

image courtesy of  howstuffworks.com

When a voltage is applied between the plasma display electrode and the respective address electrode, an electric current flows through the gas in the cell; this simulates the gas atoms to release ultraviolet photons. This ultraviolet radiation excites the phosphor lining on the inside wall of the cell - giving off energy in the form visible light.

The phosphors in a plasma display are arranged to give off colored light—red, green or blue—to build a color image. As already indicated earlier on, each picture element in a display panel is made up of three sub-pixels—each acting as a miniature light source, one for each of the primary light colors.

These colors blend together to create the final color of the pixel; this is very much the same with the way colors blend in CRTs and LCDs.

Pixel Brightness: The pixel brightness in a plasma display is controlled by using pulse-width modulation techniques. This means that by varying the duration of the voltage pulses applied to the sub-pixel electrodes several thousand times per second, it is possible to control the intensity of the resultant current pulses flowing through the individual cells. This in turn energizes each sub-cell phosphor at different levels to generate increased or decreased intensity of colored light in line with the picture content. This makes it possible for plasma displays to generate billions of different shades of colors, leading to extremely accurate color reproduction and smooth film-like image.

people like Practical-Home-Theater-Guide.com

Visit Practical Home Theater Guide at Google Plus Visit us at Google Plus

 Article Content

Links to issues discussed in this article:

Blue bullet  Flat-Panel Plasma TVS: Among the most popular big screen HDTVs

Blue bullet  Plasma Display Technology explained:

Electron Physics: A few basics

How-it-works Plasma Display Technology

Latest Plasma TV Reviews and Discussions

Featured plasma TV reviews and related discussions on current plasma HDTVs

Is a Plasma Television still worth considering as a big screen TV option?
Plasma TV Reviews - 2013 Roundup

Plasma TVs may be at the end of the line, but the latest 2013 plasma TVs have definitely made it to the very top when it comes to picture performance.

We review the latest plasma TVs from Panasonic, Samsung and LG to see what is on offer for those who really care about picture performance.

Plasma Television: Are we witnessing the end of an era?s. Acer H6510BD Plasma TVs: Are we witnessing the end of an era?

The recent announcement by Panasonic seems to imply plasma has reached the end of the line.

Is this a premature death? What are the implications for those who care about picture quality? Some are pointing towards OLED TVs but... is OLED at its present pricing a real option?



Plasma HDTV Reviews:
A 2012 Roundup

Covering some of the best plasma HDTVs for 2012


Best Plasma TVs for 2012 Samsung vs. Panasonic

When it comes to the best plasma TVs, it is Samsung vs. Panasonic...


Samsung Plasma HDTVs for 2012: Reviewing Samsung's E6500, E7000, and E8000

To join our discussion, click here.


Panasonic vs. Panasonic: Which is the best Panasonic Plasma HDTV for 2012?

To join our discussion, click here.

Home Theater Guides

Recommended Technical Reading

Plasma HDTV Guides:

Plasma HDTVs: Are these still worth considering?

Plasma TVs: What to look for

Plasma vs. LCD vs. LED TVs

Protecting your Plasma TV

Plasma Television FAQs

HDTV Installation Guides

Plasma TV Installation Basics

Installing a TV Wall Mount

Installing a Plasma TV over the Fireplace

Featured 2013 Plasma HDTVs

Check out the latest offers atbuy from amazon